Part Number Hot Search : 
LT1207 VCC1FIBR AP9926M HA22012 T038XW17 1209D P6N60 631A21
Product Description
Full Text Search
 

To Download FDP3672 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FDP3672
September 2003
FDP3672
N-Channel PowerTrench(R) MOSFET 105V, 41A, 33m
Features
* r DS(ON) = 25m (Typ.), VGS = 10V, ID = 41A * Qg(tot) = 28nC (Typ.), VGS = 10V * Low Miller Charge * Low QRR Body Diode * Optimized efficiency at high frequencies * UIS Capability (Single Pulse and Repetitive Pulse) * Qualified to AEC Q101
Applications
* DC/DC converters and Off-Line UPS * Distributed Power Architectures and VRMs * Primary Switch for 24V and 48V Systems * High Voltage Synchronous Rectifier * Direct Injection / Diesel Injection Systems * 42V Automotive Load Control * Electronic Valve Train Systems
Formerly developmental type 82760
D
DRAIN (FLANGE) SOURCE DRAIN GATE TO-220AB FDP SERIES
G
S
MOSFET Maximum Ratings TC = 25C unless otherwise noted
Symbol VDSS VGS Parameter Drain to Source Voltage Gate to Source Voltage Drain Current Continuous (TC = 25oC, VGS = 10V) ID Continuous (TC = 100oC, VGS = 10V) Continuous (Tamb = 25oC, VGS = 10V, R JA = 62oC/W) Pulsed E AS PD TJ, TSTG Single Pulse Avalanche Energy (Note 1) Power dissipation Derate above 25oC Operating and Storage Temperature 41 31 5.9 Figure 4 48 135 0.9 -55 to 175 A A A A mJ W W/oC
o
Ratings 105 20
Units V V
C
Thermal Characteristics
RJC RJA Thermal Resistance Junction to Case TO-220 Thermal Resistance Junction to Ambient TO-220 (Note 2) 1.11 62
o o
C/W C/W
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
(c)2003 Fairchild Semiconductor Corporation
FDP3672 Rev. A3
FDP3672
Package Marking and Ordering Information
Device Marking FDP3672 Device FDP3672 Package TO-220AB Reel Size Tube Tape Width N/A Quantity 50 units
Electrical Characteristics TC = 25C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
BVDSS IDSS IGSS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current ID = 250A, VGS = 0V VDS = 80V VGS = 0V VGS = 20V TC= 150oC 105 1 250 100 V A nA
On Characteristics
VGS(TH) Gate to Source Threshold Voltage V GS = VDS, ID = 250A ID = 41A, VGS = 10V rDS(ON) Drain to Source On Resistance ID = 21A, VGS = 6V, ID = 41A, VGS = 10V, TC = 175oC 2 0.025 0.031 0.063 4 0.033 0.055 0.070 V
Dynamic Characteristics
CISS COSS CRSS Qg(TOT) Qg(TH) Qgs Qgs2 Qgd Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge at 10V Threshold Gate Charge Gate to Source Gate Charge Gate Charge Threshold to Plateau Gate to Drain "Miller" Charge VDS = 25V, VGS = 0V, f = 1MHz VGS = 0V to 10V VGS = 0V to 2V VDD = 50V ID = 41A Ig = 1.0mA 1670 240 55 28 3.9 12 8.0 6.5 37 5 pF pF pF nC nC nC nC nC
Resistive Switching Characteristics (VGS = 10V)
tON td(ON) tr td(OFF) tf tOFF Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 50V, ID = 41A VGS = 10V, RGS = 11.0 12 48 24 27 90 77 ns ns ns ns ns ns
Drain-Source Diode Characteristics
VSD trr QRR Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ISD = 41A ISD = 21A ISD = 41A, dISD/dt =100A/s ISD = 41A, dISD/dt =100A/s 1.25 1.0 39 42 V V ns nC
Notes: 1: Starting TJ = 25C, L = 0.11mH, IAS = 30A. 2: Pulse Width = 100s
(c)2003 Fairchild Semiconductor Corporation
FDP3672 Rev. A3
FDP3672
Typical Characteristics TC = 25C unless otherwise noted
1.2 50 VGS = 10V POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 0 25 50 75 100 125 150 175 40
0.8
30
0.6
0.4
20
0.2
10
0 TC , CASE TEMPERATURE (oC)
0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (o C)
Figure 1. Normalized Power Dissipation vs Ambient Temperature
2 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01
Figure 2. Maximum Continuous Drain Current vs Case Temperature
ZJC, NORMALIZED THERMAL IMPEDANCE
PDM 0.1 t1 t2 SINGLE PULSE NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 10-1 t, RECTANGULAR PULSE DURATION (s) 100 101
0.01 10-5 10-4
Figure 3. Normalized Maximum Transient Thermal Impedance
500 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION IDM, PEAK CURRENT (A)
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS:
VGS = 10V
I = I 25
175 - TC 150
100
30 10 -5 10-4 10-3 10-2 t , PULSE WIDTH (s) 10-1 100 10 1
Figure 4. Peak Current Capability
(c)2003 Fairchild Semiconductor Corporation
FDP3672 Rev. A3
FDP3672
Typical Characteristics TC = 25C unless otherwise noted
200 100
200
10s IAS, AVALANCHE CURRENT (A)
100
If R = 0 tAV = (L)(I AS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
ID, DRAIN CURRENT (A)
100s 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON)
STARTING TJ = 25oC 10
1 SINGLE PULSE TJ = MAX RATED TC = 25oC 0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
1ms 10ms DC
STARTING TJ = 150oC
1
100
200
0.001
0.01
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
Figure 5. Forward Bias Safe Operating Area
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching Capability
80 TC = 25oC 60 VGS = 10V VGS = 7V VGS = 6V
80
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
60
TJ = 175o C 40 TJ = 25o C 20 TJ = -55oC
40 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 20 VGS = 5V
0 3.5 4.0 4.5 5.0 5.5 6.0 VGS , GATE TO SOURCE VOLTAGE (V) 6.5
0 0 0.5 1.0 1.5 2.0 2.5 VDS , DRAIN TO SOURCE VOLTAGE (V) 3.0
Figure 7. Transfer Characteristics
40 DRAIN TO SOURCE ON RESISTANCE (m ) PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 35 VGS = 6V 30 NORMALIZED DRAIN TO SOURCE ON RESISTANCE
Figure 8. Saturation Characteristics
2.5 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 2.0
1.5
25
VGS = 10V
1.0 VGS = 10V, ID = 41A 0.5
20
15 0 10 20 30 ID, DRAIN CURRENT (A) 40 50
-80
-40
0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
200
Figure 9. Drain to Source On Resistance vs Drain Current
Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature
(c)2003 Fairchild Semiconductor Corporation
FDP3672 Rev. A3
FDP3672
Typical Characteristics TC = 25C unless otherwise noted
1.2 VGS = VDS, ID = 250A 1.0 NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 ID = 250A
1.1
0.8
1.0
0.6
0.4 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (o C) 200
0.9 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (o C) 200
Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature
3000 CISS = CGS + CGD COSS CDS + CGD
Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature
10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 50V 8
1000 C, CAPACITANCE (pF)
6
CRSS = CGD 100
4
2
VGS = 0V, f = 1MHz 10 0.1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 100
WAVEFORMS IN DESCENDING ORDER: ID = 41A ID = 6A 0 5 10 15 20 25 30
0 Qg, GATE CHARGE (nC)
Figure 13. Capacitance vs Drain to Source Voltage
Figure 14. Gate Charge Waveforms for Constant Gate Currents
(c)2003 Fairchild Semiconductor Corporation
FDP3672 Rev. A3
FDP3672
Test Circuits and Waveforms
VDS tP L IAS VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP 0V RG VDD
+
BVDSS
VDS
VDD
IAS 0.01
0 tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS
VDD
Qg(TOT) VDS
L VGS = 10V VGS
+
VDD DUT Ig(REF) 0 Qg(TH)
VGS VGS = 2V Qgs2 Qgs Ig(REF) 0 Qgd
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON td(ON) RL VDS 90% tr
tOFF td(OFF) tf 90%
VGS
+
VDD DUT 0
10%
10%
90% VGS 50% PULSE WIDTH 50%
RGS
VGS
0
10%
Figure 19. Switching Time Test Circuit
Figure 20. Switching Time Waveforms
(c)2003 Fairchild Semiconductor Corporation
FDP3672 Rev. A3
FDP3672
PSPICE Electrical Model
.SUBCKT FDP3672 2 1 3 ; Ca 12 8 5.8e-10 Cb 15 14 6.8e-10 Cin 6 8 1.6e-9 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD Ebreak 11 7 17 18 105 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 Lgate 1 9 9.56e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 4.45e-9 RLgate 1 9 95.6 RLdrain 2 5 10 RLsource 3 7 44.5 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 6.0e-3 Rgate 9 20 1.5 RSLC1 5 51 RSLCMOD 1.0e-6 RSLC2 5 50 1.0e3 Rsource 8 7 RsourceMOD 9.5e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD
GATE 1 RLGATE CIN
rev October 2002
LDRAIN DPLCAP 10 RSLC1 51 ESLC 50 RDRAIN EVTHRES + 19 8 6 MSTRO LSOURCE 8 RSOURCE S1A 12 S1B CA 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT 15 17 RBREAK 18 RVTEMP 19 VBAT + 22 7 RLSOURCE SOURCE 3 21 16 RLDRAIN DBREAK 11 + 17 EBREAK 18 MWEAK MMED 5 DRAIN 2
RSLC2
5 51 ESG + LGATE EVTEMP RGATE + 18 22 9 20 6 8 -
Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*98),3))} .MODEL DbodyMOD D (IS=1.0E-11 N=1.05 RS=3.7e-3 TRS1=2.5e-3 TRS2=1.0e-6 + CJO=1.2e-9 M=0.58 TT=3.75e-8 XTI=4.0) .MODEL DbreakMOD D (RS=15 TRS1=4.0e-3 TRS2=-5.0e-6) .MODEL DplcapMOD D (CJO=3.8e-10 IS=1.0e-30 N=10 M=0.60) .MODEL MmedMOD NMOS (VTO=3.6 KP=3 IS=1e-40 N=10 TOX=1 L=1u W=1u RG=1.5) .MODEL MstroMOD NMOS (VTO=4.3 KP=59 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=3.09 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=15 RS=0.1) .MODEL RbreakMOD RES (TC1=9.0e-4 TC2=-1.0e-7) .MODEL RdrainMOD RES (TC1=11.0e-3 TC2= 6.1e-5) .MODEL RSLCMOD RES (TC1=3.0e-3 TC2=1.0e-6) .MODEL RsourceMOD RES (TC1=4.0e-3 TC2=1.0e-6) .MODEL RvthresMOD RES (TC1=-3.5e-3 TC2=-1.5e-5) .MODEL RvtempMOD RES (TC1=-4.3e-3 TC2=1.5e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5.0 VOFF=-3.5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-5.0) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=0.3) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.3 VOFF=-0.5) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
(c)2003 Fairchild Semiconductor Corporation
+
DBODY
FDP3672 Rev. A3
FDP3672
SABER Electrical Model
REV October 2002 template FDP3672 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=1.0e-11,nl=1.05,rs=3.7e-3,trs1=2.5e-3,trs2=1.0e-6,cjo=1.2e-9,m=0.58,tt=3.75e-8,xti=4.0) dp..model dbreakmod = (rs=15,trs1=4.0e-3,trs2=-5.0e-6) dp..model dplcapmod = (cjo=3.8e-10,isl=10.0e-30,nl=10,m=0.60) m..model mmedmod = (type=_n,vto=3.6,kp=3,is=1e-40, tox=1) m..model mstrongmod = (type=_n,vto=4.3,kp=59,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=3.09,kp=0.05,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-5.0,voff=-3.5) LDRAIN DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-5.0) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.5,voff=0.3) 10 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.3,voff=-0.5) RLDRAIN RSLC1 c.ca n12 n8 = 5.8e-10 51 c.cb n15 n14 = 6.8e-10 RSLC2 c.cin n6 n8 = 1.6e-9 ISCL dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 105 spe.eds n14 n8 n5 n8 = 1 GATE 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 i.it n8 n17 = 1 l.lgate n1 n9 = 95.6e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 4.45e-9 res.rlgate n1 n9 = 9.56 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 44.5
CA S1A 12 13 8 S1B 13 + EGS 6 8 EDS S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 LGATE ESG + EVTEMP RGATE + 18 22 9 20 6 MSTRO CIN 8 6 8 EVTHRES + 19 8 50 RDRAIN 21 16 MWEAK MMED EBREAK + 17 18 DBREAK 11 DBODY
DRAIN 2
RLGATE
LSOURCE 7 RLSOURCE
SOURCE 3
RSOURCE RBREAK
18 RVTEMP 19
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=9.0e-4,tc2=-1.0e-7 res.rdrain n50 n16 = 6.0e-3, tc1=11.0e-3,tc2=6.1e-5 res.rgate n9 n20 = 1.5 res.rslc1 n5 n51 = 1.0e-6, tc1=3.0e-3,tc2=1.0e-6 res.rslc2 n5 n50 = 1.0e3 res.rsource n8 n7 = 9.5e-3, tc1=4.0e-3,tc2=1.0e-6 res.rvthres n22 n8 = 1, tc1=-3.5e-3,tc2=-1.5e-5 res.rvtemp n18 n19 = 1, tc1=-4.3e-3,tc2=1.5e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/98))** 3)) }
(c)2003 Fairchild Semiconductor Corporation
FDP3672 Rev. A3
FDP3672
SPICE Thermal Model
REV October 2002 FDP3672 CTHERM1 TH 6 3.2e-3 CTHERM2 6 5 3.3e-3 CTHERM3 5 4 3.4e-3 CTHERM4 4 3 3.5e-3 CTHERM5 3 2 6.4e-3 CTHERM6 2 TL 1.9e-2 RTHERM1 TH 6 5.5e-4 RTHERM2 6 5 5.0e-3 RTHERM3 5 4 4.5e-2 RTHERM4 4 3 10.5e-2 RTHERM5 3 2 3.4e-1 RTHERM6 2 TL 3.5e-1
th
JUNCTION
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model FDP3672 template thermal_model th tl thermal_c th, tl { cctherm.ctherm1 th 6 =3.2e-3 ctherm.ctherm2 6 5 =3.3e-3 ctherm.ctherm3 5 4 =3.4e-3 ctherm.ctherm4 4 3 =3.5e-3 ctherm.ctherm5 3 2 =6.4e-3 ctherm.ctherm6 2 tl =1.9e-2 rtherm.rtherm1 th 6 =5.5e-4 rtherm.rtherm2 6 5 =5.0e-3 rtherm.rtherm3 5 4 =4.5e-2 rtherm.rtherm4 4 3 =10.5e-2 rtherm.rtherm5 3 2 =3.4e-1 rtherm.rtherm6 2 tl =3.5e-1 }
RTHERM3 CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
(c)2003 Fairchild Semiconductor Corporation
FDP3672 Rev. A3
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM FACT Quiet SeriesTM ActiveArrayTM FAST BottomlessTM FASTrTM CoolFETTM FRFETTM CROSSVOLTTM GlobalOptoisolatorTM DOMETM GTOTM EcoSPARKTM HiSeCTM E2CMOSTM I2CTM TM EnSigna ImpliedDisconnectTM FACTTM ISOPLANARTM Across the board. Around the world.TM The Power FranchiseTM Programmable Active DroopTM
DISCLAIMER
LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXProTM OPTOLOGIC OPTOPLANARTM PACMANTM POPTM
Power247TM PowerTrench QFET QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM SILENT SWITCHER SMART STARTTM SPMTM StealthTM SuperSOTTM-3
SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogic TINYOPTOTM TruTranslationTM UHCTM UltraFET VCXTM
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I5


▲Up To Search▲   

 
Price & Availability of FDP3672

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X